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Abstract— The current sharing between insulated strands
in a superconducting cable is one of the important prob-
lems for its utilization. From the view points of the inverse
problem, the sensitivity of current sharing between the insu-
lated strands is determined by the condition number of the
inductance matrix. For the triple strands with the self simi-
lar structure, we derive the analytic form of the inductance
matrix which only includes two parameters; the self induc-
tance of a unit wire, the ratio of mutual to self inductance
for unit wires. Since the matrix elements also have the self
similar structure, we can analytically obtain the eigenval-
ues, eigenvectors and condition number, which is the ratio
of maximum and minimum eigenvalues. Next, we derive the
formula to estimate the sensitivity of the current distribu-
tion against the displacement of inductance from the ideal
case by use of the condition number. This formula shows
that the sensitivity is inversely proportional to the differ-
ence of self and mutual inductances of unit wires. Moreover,
we estimate the condition number of the very thin wire to
check our formula. Finally, we verify our analytic form by
numerical calculations.

Keywords— SMES, superconductor, strand, current shar-
ing, fractal, self similar, inverse problem, inductance

I. INTRODUCTION

HE progress of the superconducting material technol-

ogy in recent years makes possible to produce the mag-
net made of superconductor, and the superconducting mag-
netic energy storage (SMES)[1]-[3] is also studied. In the
field of the nuclear fusion, the superconducting technol-
ogy is realized as a coil of the Large Helical Device[4] and
ITER[5]. One of the important problems in making the
cable from the superconducting wire is the current sharing
phenomenon[6]-[8]. To use the current capacity of the coil
fully, it is necessary that the current uniformly flows in all
the filaments that compose the coil. However, the current
distribution is determined by the inductance because the
superconducting wire has no electric resistance. Therefore,
almost all superconducting wires consist of many stranded
filaments to make inductances of the filaments uniform.
However, even if such a wire is utilized, it is difficult to
remove the dispersion of the inductance, and they can use
only about 30% of the current capacity for the present.

In this work, we investigate the current sharing phe-
nomenon of triple strands and derive the theoretical for-
mula which shows the degree of sharing. In the next sec-
tion, we derive the basic equations of current sharing phe-
nomenon and explain the principle of the phenomenon. In
section III, we analyze the current sharing of the simple
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triple strands. In section IV, we extend the analysis to the
current sharing of the multiple triple strands, and derive
the degree of sharing quantitatively. In the last section, we
summarize this study.

II. BAsiC EQUATIONS

When the electric resistivity is negligible, the current
flowing in the circuit follows the next equation,

drI
— =V, 1
T (1)
where L is the inductance matrix of the element lines, I is
the vector of current flowing in each element line, V' is the
vector of volage added to each element line. Because we
add usually the same voltage to each element line, (1) is

reduced to

LI = ou, (2)
1

u = ,
1

o = / V().

This is the basic equation for the current sharing of super-
conducting strands. Although ® is the function of time in
general, we assume ® is constant in this work because we
need the ratio of current only.

First of all, consider the simplest strands of two lines to
understand the current sharing. In this case, (2) is reduced
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Therefore, the current ratio of I /I is
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This equation shows that the source of sharing is the disper-
sion of the self inductance. When the mutual inductance
M is much smaller than the self inductance L, the current
sharing is small even though the values of the self induc-
tance are dispersed. Unfortunately, the small dispersion of
L is amplified in the case of strands because of M ~ L.

III. SIMPLE TRIPLE STRANDS

In this section, we consider the case of simple triple
strands. Because the magnetic coupling between each ele-
ment line is strong in the case of the strands, we assume



that mutual inductance is barely smaller in comparison
with self inductance. By use of small positive parameter
€;, the normalized inductance matrix can be reduced to

l+e 1 1
L= 1 146 1 : (5)
1 1 146

Here, we assume that all components of mutual inductance
have the same value and one of the self inductances is
changed barely. In this case, the solution to current vector
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I= 1 . (6)
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This solution shows all the components of current, which
are distributed, have the same direction. Next, we dis-
tribute the values of mutual inductances while the value of
self inductance is fixed. The inductance matrix in this case
is as follows:

1 1—61 1—62

1—61 1 1—61 . (7)
1—62 1—61 1

I_:

The solution to current vector for the inductance matrix is

1
2—2 |, (8)
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This solution shows that the large dispersion of mutual
inductance reverses the direction of current in a filament.
Therefore, it is expected that the distribution of current
sharing strongly depends on the dispersion of mutual in-
ductance.

Since the values of each element of the inductance matrix
of the strands are close to each other, the solutions to (5)
and (7) are undetermined in the case of ¢ = €2 = 0 because
the determinant of the matrixes is zero. The eigenvalues
and eigenvectors of L in the case of ¢ = €3 = 0 are as
follows:

AL=3, A=0, A3=0, (9)
1 -1 -1

rp = 1 , Ly = 0 , L3 = 1 (10)
1 1 0

Using arbitrary real parameters of ag,as, the solution to
this equation is expressed as

I =2x+ ayxs + azxs. (11)
All components of the current vector has the same value in
the case of as = a3 = 0 only.

Next, we consider the more general problem. We expand
the current vector I and the constant vector w in the right-
hand side of (2) by the eigenvectors @; of the inductance
matrix L as follows:

I:Zaixi, u:Zbiwi.
% %

(12)

When these equations are substituted to (2), the next equa-

tion is obtained,
> aidiwi =Y b,
i i

where )\; are the eigenvalues of L. Since the inductance
matrix is positive definite and symmetric, the eigenvectors
are orthogonal to each other. Hence, the coefficients are
determined as follows:

(13)

(14)

This equation shows that the components with small eigen-
value are amplified. Therefore, the solution to the simul-
taneous linear equations by matrix with small eigenvalues
are sensitive to the change in coefficients, and called as
ill-posed problem. Parameter that shows this sensitive na-
ture is called the condition number[9] and is defined by the
following equation in this problem.

_ Amax
cond(L) = [|L][ - [[L7H] = £==

(15)

Here, ||L|| is norm of matrix L defined as the maximum
eigenvalue. The second equality derived by use of the re-
lation that the maximum eigenvalue of L~! is the mini-
mum eigenvalue of L for the positive definite matrix. Using
the condition number, the change in current caused by the
change in inductance is represented as,
|01 [loL]] _ I8L]|

— < cond(L)— = .
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(16)

When we apply this result to the inductance matrix of (7),
we get the next equation,

87| _ I8t _ ¢
[I| = e €

, (17)

where € = €1, £ = |e1 — e2|. Since the relation of [0I]/|I]| =
&/e holds in (8), (16) expresses the degree of sharing of an
element line current very precisely in the case of the simple
triple strands.

IV. MULTIPLE TRIPLE STRANDS

In this section, we consider the multiple triple strands
which is multiply combined by many simple triple strands.
In Fig. 1 the cross section of it is represented. Here, we
define the layers as follows: the element wire is level 0, the
first triple strand which consists of three wires is level 1,
the second level strand consists of the first level strand,
and so on. Because the strand of level n consists of the
strands of level n — 1, the physical quantities on level n
can be represented by those of subscript n. The relation of
inductances on level n and n — 1 is expressed as

9L, = 3L,_1 + 6M,_1. (18)

Here we follow the example of the previous section and set
mutual inductance of each level as

My=(1—-e)ln (0<en<1). (19)



Fig. 1. Schematic cross section of multiple triple strand.

This is also the definition of €,, which relates to the mag-

netic coupling of wires. When ¢,, = 1, each wire is indepen-

dent to other wires, while all wires are perfectly coupled to

each other in the case of ¢, = 0. Substituting this equation
0 (18), The next relation is derived,

L, 1 2
=1—-€ey_1=0p_1.
Ln—l 3 n—1 n—1
Using this equation, we get the inductance on each level as
follows:

(20)
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On1Lly_1 == Loll} oy,
(1 —en)Ly = Lo(1 — en)Hznz_Olai.

On the other hand, the inductance matrix on level 1 is
represented as

Lo My My
L= My Lo My (23)
My M, Lo

Using the self similarity of the multiple triple strands shown
in Fig. 1, the inductance on level n is expressed as

I—n—l Mn—l Mn—l
I—n = Mn—l I—n—l Mn—l , (24)
Mn—l Mn—l I—n—l
j\jn_1
M, . = ) (25)

In this case, the maximum and the minimum eigenvalues
are evaluated by the use of (22) as

)\Inax = LO3HH?=_010"L; Amin = Loeo. (26)

Since the eigenvector with the maximum eigenvalue is w,
the solution to (2) for the multiple triple strands is the
current vector whose all components have the same value.
However, because the components of the actual inductance
matrix are distributed, the degree of dispersion for the cur-
rent of each filament against the distribution of the induc-
tance matrix ||dL|| is represented by use of (16) as

[0 _ 3" TGy i [loLal| _ [loLall
Il = e Ll eoLo

(27)

This equation is a general form of current sharing in the
multiple triple strands. It shows that the current sharing
increases with the strength of the magnetic coupling be-
tween the filaments 1/ep and the number of nesting level
n.

To evaluate (27), we need the expression of ||dL,,||. When
the deviation of inductance for each filament is almost
equivalent, we can put the error matrix dLy of Ly as fol-
lows:

1 -1 -1
-1 1 - -1

oLo = €Lg . A -
-1 -1 .- 1

where ¢ represents the degree of dispersion of inductance.
Since the relation ||JL,, || = 3" Lo holds in this case, we get

the next relation,

ol g€

=" 2

It is also clear that the current sharing increases with the
coupling between the filaments 1/¢y and the number of
nesting level n.

Next, we apply the result to the ring-shaped coil of radius
R. Since the pitch of winding of elementary filaments is
small in general, the self inductance and mutual inductance
of the filament with radius a are represented as
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For example, we employ the Nb-Ti filament with a radius
a = lpm which is used for the helical coil of LHD[4]. When
we put the radius of the coil R = 1m, the coupling param-
eter ¢y of the filaments is evaluated as follows:

Lo— M, log2+ 1
- 8R

LQ _10g——£

a

~ (.07.

€o

In this example, the condition ¢ ~ 1 x 10~ is required to
suppress the error of current less than 10% in the case of 4
layers.

V. SUMMARY AND DISCUSSIONS

To investigate the current distribution of strands, the
inductance matrix is analyzed using the technique of the
inverse problem. For the simple triple strands, the rever-
sal of the current is caused by the dispersion of mutual
inductance.

Furthermore, the inductance matrix of the multiple
triple strands is analytically derived using the self simi-
larity of the strands. This alalytic form includes only two
parameters; the self inductance of a unit wire, the ratio
of mutual to self inductance for unit wires. The degree of
current sharing against the dispersion of components of the
inductance matrix is also obtained analytically. According
to the analytic form of the degree of current sharing, the



degree of sharing increases with the number of layers and
the magnetic coupling between the filaments. Usually, the
degree of sharing is evaluated numerically, but the calcula-
tion is unstable because of the singularity of the inductance
matrix. Since our formula utilizes the singularity, it enables
us to evaluate the degree of sharing precisely.

In this work, we restrict the types of strands to the triple
strands for simplicity. Since the method in this work is
easily extended to the other multiple strands, the results
of this work is also applicable to general superconducting
coils.

REFERENCES

[1] Y.Sato, et. al.: Proceedings of 15th International Conference
on Magnet Technology (MT15) 542, Oct. 20-24, 1997, Beijing,
China.

[2] S. Nomura, T. Osaki, J. Kondoh, H. Tsutsui, S. Tsuji-Iio, Y.
Sato and R. Shimada: IEEE Tran. Appl. Superconductivity,
9(2), (1999) 354-357.

[3] S. Nomura, et al.: IEEE Tran. Appl. Superconductivity 11(1),
1920 (2001)

[4] K. Kitamura, et al.: Fusion Eng. Des., 20, 167 (1993)

[5] C. Sborchia, et al.: IEEE Tran. Appl. Superconductivity, 10,
No.1, 554 (2000)

[6] R. Schermer, B. Turck: Adv. Cryog. Eng., 26, 599 (1980)

[7] N. Koizumi, K. Okuno, Y. Takahashi, H. Tsuji, S. Shjmamoto:
Cryogenics, 36, 409 (1996)

[8] S. Yamaguchi, J. Yamamoto, O. Motojima: Cryogenics, 36, 661
(1996)

[9] A.S. Householder: " The Theory of Matrices in Numerical Anal-
ysis”, Dover (1975)



