

18th International Conference on Magnet Technology October 20-24, 2003, Morioka, Japan

Design of Force-Balanced Coils for High Field Tokamak Reactors

H. Tsutsui,

S. Nomura, S. Tsuji-Iio, R. Shimada

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

- The **virial theorem** is the relation between the kinetic and the potential energies. The theorem, which is derived only form the equilibrium, shows that the tension is required to hold the magnetic energy.
- Using the **virial theorem**, we extended and generalized Force-Balanced Coil which is a helical type hybrid coil of the toroidal field (TF) coil and the solenoidal coil, and showed the condition to minimize the stress working in the coil (**virial-limit condition**).
- In this work, we extend our theory to arbitrary shape cross section, and try to optimize the shape of a cross section.

Centering Force by Poloidal Current

Force-Balanced Coil

helical **hybrid** coil of Toroidal Field Coils and Center Solenoid

Hoon Force by Toroidal Current

Centering force is much reduced, but stress distribution is not investigated.

等々力(Equal Force) TODOROKI-I

Parameter	Value
Toroidal Field	1 T
Plasma Current	10kA
Time of Discharge	4ms

- The error field by FBC made the control of plasma difficult
- The force of toroidal direction was reduced in FBC Is it held in stress ?

- Reduction Error Field
- Estimation of Stress
- Application of Virial Theorem

- Positive stress (tension) is required to hold the field.
- Uniform tension is favorable.
- Theoretical limit is determined.

$$\widetilde{\sigma}_1 = \widetilde{\sigma}_2 = \widetilde{\sigma}_3 = \frac{1}{3}$$

Application to Thin Toroidal Shell

- We consider the toroidal coil with so large aspect ratio that toroidal effect is negligible.
- The current distribution is adopted which makes toroidal surface correspond to both current and magnetic surfaces.
- When torus is axisymmetric, the direction of principal stresses are ϕ and θ .

TF	Coil	(Major	radius:	<i>R</i> ,	minor	radius:	а,	thickness: 4	Δρ))
----	------	--------	---------	------------	-------	---------	----	--------------	-----	---

	φ	θ	Sumation	
Stress	$-\frac{\mu_0 a^2 I_\theta^2}{16\pi^2 R \Delta \rho}$	$\frac{\mu_0 a^2 I_\theta^2}{8\pi^2 R \Delta \rho}$		
Integral	$-\frac{\mu_0 a^2 I_\theta^2}{4R}$	$\frac{\mu_0 a^2 I_\theta^2}{2R}$	$\frac{\mu_0 a^2 I_{\theta}^2}{4R}$	
Energy			$\frac{\mu_0 a^2 I_{\theta}^2}{4R}$	

$$\begin{split} \left< \widetilde{\sigma}_{\theta} \right> &= \frac{N^2 - A^2}{\frac{N^2}{2} + A^2 \log 8A - 2A^2} \\ \left< \widetilde{\sigma}_{\phi} \right> &= \frac{A^2 \log 8A - A^2 - \frac{N^2}{2}}{\frac{N^2}{2} + A^2 \log 8A - 2A^2} \\ \left< \widetilde{\sigma}_{\theta} \right> &+ \left< \widetilde{\sigma}_{\phi} \right> = 1 \\ N &\equiv \frac{I_{\theta}}{I_{\phi}} : \text{Pitch of Coil} \\ A : \text{Aspect Ratio} \end{split}$$

Virial-Limit Condition

Shape of Coils

Comparison of Toroidal Field

 In the case of low aspect ratio, 1.5 times stronger magnetic field is created compared with traditional TF coil.

Toroidal Effect

Equilibrium of Magnetic Pressure and Stress

 Distribution of stress in the toroidal shell with circular cross section is derived analytically by use of magnetic pressure.

Distribution of Stress

- When A=100, distribution of stress is flat.
- There is no advantage of helical winding.

Distribution of Stress

(low aspect ratio)

- When A<10, distribution of stress is important.
- Assumption of large aspect ratio is not held.
- Optimal distribution is achieved to minimize the stress at θ=π.

Non-Circular Cross Section

- The solution is only a modification in a case of a circular cross section.
- $R r^*, \theta \alpha, a a(r)$: curvature radius

2D Virial-Limit Coil

$$\frac{\mathrm{d}T_{\theta}}{\mathrm{d}r} = \frac{\mathrm{d}T_{\phi}}{\mathrm{d}r} = 0 \Longrightarrow T_{\theta} = T_{\phi} \equiv T$$

$$\int \int \frac{\mathrm{d}T_{\theta}}{\mathrm{d}r} + T_{\theta} = T_{\phi} = \frac{arp - rT_{\theta}}{a\cos\alpha}$$

$$p = \frac{\mu_0}{8\pi^2} I_{\phi}^2 \left(\frac{N^2}{r^2} - \frac{f^2}{a^2} \right) = T \left(\frac{1}{a} + \frac{\cos \alpha}{r} \right)$$

$$N \equiv \frac{I_{\theta}}{I_{\phi}}, \quad \frac{1}{a} = \frac{d\cos\alpha}{dr}$$
$$f(r) = c f(r)$$

$$j_{\phi} = I_{\phi} \frac{f(r)}{2\pi a}, \quad \oint \frac{f(r)}{2\pi a} \mathrm{d}s = 1$$

- f, a, cosα are functionals of z(r) which expresses the shape of a cross section.
- Do solutions exist with any N and z(r) ?

$$\kappa \equiv \frac{b}{a}, \ \delta \cong \frac{c}{a}$$

 $r = a\cos(\theta + \delta\sin\theta)$
 $z = \kappa a\sin\theta$

 Searching optimal cross section of T_θ=T_φ with respect to κ, δ by Simplex method.

(non-circular)

- Searching cross section with flat stress distribution in A=2.
- Semi optimal cross sections with $1.5 < \kappa < 1.9$, $0 < \delta < 0.2$ are found in 1.5 < N < 2.0.
- Maximum stress is reduced to about half (3.0 1.6) compared with that of circular cross section.

Distribution of Stress

(low aspect ratio)

- When A<10, distribution of stress is important.
- Assumption of large aspect ratio is not held.
- Optimal distribution is achieved to minimize the stress at θ=π.

(non-circular)

A=1.5

- Searching cross section with flat stress distribution in A=1.5.
- Semi optimal cross sections with $1.8 < \kappa < 3.3$, $0 < \delta < 0.4$ are found in 0.5 < N < 1.0.
- Maximum stress is reduced to about half (3.6 1.7) compared with that of the same cross section.

Shape of Virial-Limit Coils

High elongation and low aspect ratio make directions of VLC winding become more vertical and (c) horizontal in the outer and the inner sides of torus, respectively.

A=2, N=3, κ =1, δ =0

A=2, *N*=2, κ=1.5, δ=0

 $A=1.5, N=1, \kappa=1.8, \delta=0$ $A=1.5, N=0.5, \kappa=3.3, \delta=0$

- The relation of toroidal field and stress is obtained by virial theorem, which shows that the optimal stress configuration is uniform tensile stress.
- Shape optimization of a poloidal cross section reduced the maximum stress to about half, and a virial-limit coil (VLC) makes 1.7 times stronger magnetic field than TF coils.
- Since the configuration of non-circular VLCs with high elongation and low aspect ratio is similar to that of CS and TF coil systems of conventional tokamaks, a VLC tokamak reactor can afford more room for blanket and use other parts in conventional tokamak reactors with much reduced volume of coils and their supporting structure.