1 はじめに

電力供給システムにおいて電力の有効利用の 下、負荷平準化を可能とする電力貯蔵装置が必 要とされている。そして、その中でも、超電導 磁気エネルギー貯蔵装置(SMES)は、高い貯 蔵効率、速い応答性などの利点から、多様な機 能を持ち、将来の電力系統において重要な役割 を果たすものとして期待されている。しかし、 超電導コイルには巨大な電磁力が発生するため、 SMES 装置の大容量化を妨げる大きな課題とな っている。そこで、電磁力支持材量の低減化を 可能とする電磁力平衡コイル(FBC)の概念を用 いて、応力を最小化できるコイル形状について、 実証と解析により検討することを本研究の目的 としている。

2 ビリアル限界条件

電磁力の作用する物体のみに電流が流れている場合、

$$\int_{v} \sum_{i} \sigma_{i} dv = \int_{v} \frac{B^{2}}{2\mu_{0}} dv = E$$

が成り立つ。 σ_i は主応力、Bは磁束密度、Eは 磁気エネルギーを表す。この関係式をビリアル 定理と呼び、主応力の総和が磁気エネルギーに 等しいことを表す。そして、磁気エネルギーを 蓄積するとき、主応力の総和は必ず正となり、 引張応力(正の応力)となることを意味する。 主応力の体積積分の総和を磁気エネルギーで規 格化すると、

$$\mathbf{Q} = \frac{\int_{v} \sum_{i} \sigma_{i} dv}{E} = 1$$

嶋田研究室 01M19070 梶田真也

となり、これを規格化平均応力と呼ぶ。ここで、 図1のような厚さの無視できるトーラス円環に おいて、この関係式は、

$$Q + Q = 1$$

となる。そして、各応力成分が等しくなって、

$$\mathsf{Q} = \mathsf{Q} = \frac{1}{2}$$

が成り立つとき、応力分布を平滑化し構造材量 を最も低減することができる。つまり、構造材 量が最小となるのは一様な引張応力分布を形成 するときである。この条件をビリアル限界条件 という。そして、この条件を電磁力平衡コイル に適用したとき、図2のようなコイル形状とな る。これをビリアル限界コイル(VLC)と呼ぶ。

3 ビリアル限界実証実験

応力を最小化するコイル形状として、ビリア ル限界コイルの妥当性を実験的に示すために、 ビリアル限界実証実験を行った。この実験にお いて使用した実験用コイルを図3に示す。この コイルは、内層と外層のビリアル限界コイルか ら成る2層構造となっており、各層に流れる電 流の大きさと方向を変えることによって、ピッ チ数(ポロイダル巻数/トロイダル巻数)の異 なるコイル形状を模擬することができる。

この実験用コイルでは、超電導状態を保てな くなり、運転が維持できなくなるときのクエン チ電流値を最大で 1039A を達成し、このとき、 最大蓄積エネルギー31kJ を達成した。また、最 大経験磁束密度は 2.8T を達成した。

磁場測定から各コイルの模擬の実現を確認し た。そして、ひずみ(応力)測定からは、各模 擬条件のひずみ特性の違いが現れていた。各模 擬条件について同じ条件下で比較するため、規 格化応力として応力値を蓄積エネルギーと体積 で規格化した。これについて、5つの測定地点 で最大となる規格化応力を引張応力と圧縮応力 に分けて図4のように示した。図4より、FBC はTFC(トロイダル磁界コイル)やPFC(ポロ イダル磁界コイル)よりも最大応力値が小さく なり、電流比0付近において最小となることが わかる。よって、FBC は電磁力の低減を可能と し、その中でもVLC は応力を最小化できるコイ ル形状として有効的であることが言える。

図3 実験用コイル

4 三次元応力解析の必要性

ビリアル限界実証実験において、応力分布の 結果は測定位置全体的に引張よりも圧縮の傾向 を示していた。また、VLCにおいても、ビリア ル定理の意味する引張応力分布とはならなかっ た。この原因として、小半径方向応力が生じた ことや、内力が生じる導体と巻枠の位置関係に よる相違があったことなどが考えられる。そこ で、三次元モデルを想定した構造解析が必要で あると考え、三次元解析で広く用いられている 有限要素法(FEM)による応力解析を行うこと にした。また、この解析では実験における応力・ ひずみの測定結果の検討及び応力分布・降伏地 点についての検討を行うことを目的として行っ た。

5 有限要素法を用いた VLC の応力解析

5.1 解析手順

本解析においては、解析対象をビリアル限界

実証実験において使用した外層のビリアル限界 コイルとした。そして、簡単なモデルの構築を 前提として以下の条件を用いた。

- (1) 電磁力のみの入力として自重などを考慮しない。
- (2)導体及び巻枠を一体化したモデルを想定 することで、境界条件がなく、均質な材 料特性とする。

そして、有限要素分割は6面体(HEX)として を行った。また、解析対象はトロイダル方向に 対して20°の周期性を持つことから、図5のよ うな18分の1のモデルを構築した。このように して、周期的境界条件を用いて解析を行うこと により、要素数の削減を行い、厚み分割数を確 保した。一方、電磁力計算については導体領域 に含まれる要素を抽出したのち、体積力として 電磁力を求めた。そして、有限要素法による応 力計算では構造解析ソフト ABAQUS を利用し て行った。

図 5 三次元モデル(18分の1モデル)

5.2 巻枠表面における応力分布

トロイダル座標系における各応力成分のポロ イダル角分布を図6に示す。図6より広範囲に 渡って ,, , , , の関係が 成り立ち、小半径方向応力成分を無視すること ができることがわかる。よって、実験において 平面応力分布(,)として、応力・ひずみは 十分に評価できたと言える。

5.3 実験結果と解析結果との比較

実験値と計算値(殻モデル解析・FEM 解析) について、VLCの規格化応力のポロイダル角分 布を図7に示す。ここで、殻モデルとは厚みの ない軸対称のトーラス円環のことである。図7 より、実験値は殻モデル解析よりも FEM 解析 の計算値に近い傾向を示し、測定位置(巻枠表 面)ではビリアル限界条件の示す引張応力分布 とはならないことがわかる。つまり、引張・圧 縮の応力集中の影響により、実験における測定 値は全体として圧縮の傾向にあったことが考え られる。

5.4 主応力分布と最大応力発生地点

三次元的に応力分布を評価するために、主応 力分布を用いた。図8にコイル上面における主 応力分布を示す。図8において破線が導体と巻 枠の境界を表している。図8より全体的に導体 付近では引張、巻枠では圧縮の傾向を示し、導 体と巻枠の位置関係が応力分布に大きく影響を 及ぼすことがわかる。次に、図9に示すポロイ ダル断面における主応力分布を見ると、トーラ ス内側(左側)において引張と圧縮が最も大き くなっており、この範囲で最も応力が集中して いることがわかる。

また、主応力分布から最大応力発生地点はト ーラス最内周部にあることがわかった。実験用 コイルにおいては電流値 800A、磁気エネルギ ー19.2kJでミーゼス応力最大値4.2MPaとなっ た。そして、Cuの降伏応力約 290MPaより、 実験用コイルは磁気エネルギーを最大で約 1.3MJまで蓄積可能であることがわかった。

- 6 結論
- 6.1 本研究のまとめ
- 1.実験用コイルにおいて最大蓄積エネルギー 31kJ、最大経験磁束密度 2.8T を達成した。
- FBC は TFC や PFC よりも応力を低減す ることができ、その中でもビリアル限界コ イルは応力を最小化できるコイル形状とし て、有効性を実証した。
- 3.解析結果から、ビリアル限界実証実験にお ける応力・ひずみ測定の妥当性を確認した。
- 4.応力分布は導体と巻枠の位置関係によって 影響し、コイルの降伏地点は磁束密度が最 大となるコイル最内周部に位置することが わかった。
- 6.2 今後の課題

コイルの初期降伏地点や降伏応力を考慮して、 SMES 装置におけるコイルの支持方法や導体 量・電磁力支持材量の低減化についての検討を 行う。