

20th IEEE/NPSS Symposium on Fusion Engineering (SOFE)

Plasma Production in a Small High Field Force-Balanced Coil Tokamak Based on Virial Theorem

H.Tsutsui,

T.Ito, H.Ajikawa, T.Enokida, K.Hayakawa, S.Nomura, S.Tsuji-Iio, R.Shimada

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

- We studied the tokamak with the Force-Balanced Coils which are hybrid helical coils of OH and TF coils and reduced the electromagnetic force.
- The virial theorem, which is derived only form the equilibrium, shows that the tension is required to hold the magnetic energy.
- The virial theorem in magnet systems is derived by the replacement of plasma pressure to stress.
- In this work, we extend the FBC by the virial theorem, and obtain the minimal stress condition.
- The new small tokamak based on the virial theorem is constructed and plasma production is started.

Centering Force by Poloidal Current

TODOROKI-I

Parameter	Value
Toroidal Field	1 T
Plasma Current	10kA
Time of Discharge	4ms

- The error field by FBC made the control of plasma difficult
- The force of toroidal direction was reduced in FBC Is it held in stress ?

- Reduction Error Field
- Estimation of Stress
- Application of Virial Theorem

- Positive stress (tension) is required to hold the field.
- Uniform tension is favorable.
- Theoretical limit is determined.

$$\widetilde{\sigma}_1 = \widetilde{\sigma}_2 = \widetilde{\sigma}_3 = \frac{1}{3}$$

$$\begin{split} \left< \widetilde{\sigma}_{\theta} \right> &= \frac{N^2 - A^2}{\frac{N^2}{2} + A^2 \log 8A - 2A^2} \\ \left< \widetilde{\sigma}_{\phi} \right> &= \frac{A^2 \log 8A - A^2 - \frac{N^2}{2}}{\frac{N^2}{2} + A^2 \log 8A - 2A^2} \\ \left< \widetilde{\sigma}_{\theta} \right> &+ \left< \widetilde{\sigma}_{\phi} \right> = 1 \\ N &\equiv \frac{I_{\theta}}{I_{\phi}} : \text{Pitch of Coil} \\ A : \text{Aspect Ratio} \end{split}$$

Virial-Limit Condition

Shape of Coils

Comparison of Toroidal Field

 In the case of low aspect ratio, 1.5 times stronger magnetic field is created compared with traditional TF coil.

Equilibrium of Magnetic Pressure and Stress

 Distribution of stress in the toroidal shell with circular cross section is derived analytically by use of magnetic pressure.

Distribution of Stress

- When A=100, distribution of stress is flat.
- There is no advantage of helical winding.

Distribution of Stress

(low aspect ratio)

- When A<10, distribution of stress is important.
- Assumption of large aspect ratio is not held.
- Optimal distribution is achieved to minimize the stress at θ=π.

Uniaxial Stress Model

Equilibrium of Electromagnetic Force and Stress

$$\frac{\mathrm{d}T}{\mathrm{d}s} + \frac{F_u}{R} = 0$$
$$\frac{\mathrm{d}F_u}{\mathrm{d}s} + \frac{T}{R} + f_u = 0$$

T: tension, F: sharing force

R: curvatur radius,

- f: electromagnetic force
- *s*: coordinate by length of coil

- The tension of coil with pitch=3 is reduced and its distribution is flat.
- In the fat cable, the bending stress (proportional to bending moment) is important.
- The distribution of bending moment in the coil with pitch 3 is flat.

Why FEM analysis ?

3D analysis is required because the virial-limit condition is obtained from the 2D shell model.

Conditions in FEM Analysis

3D-Model with
Electromagnetic Force
Structure Analysis by FEM

(NASTRAN)

Stress

Parameters	Value
Major radius	0.30 m
Minor radius	0.14 m
Aspect ratio	2.14
Pitch number N	24 turns
Coil current	96 kA/1 pole
Toroidal field	1.5 T
Cross section	380 mm ²
Young's modulus	$1.26 \times 10^5 \text{ N/mm}^2$
Poisson's ratio	0.33

Current layer coincide with magnetic surface.

VLC with N=3

HC with *N*=3

FBC with *N*=4

N=3 HC with N=4Models in Analysis

Stress Analysis of VLC

Distributions of von Mises Stress

VLC(*N*=3) has no stress concentration and minimum stress compared with those of other coils. VLC realize both nearly uniform distribution of

stragg and minimum stragg in 2D model

Vertical Field

How to design Vertical Field Coil (VFC) Controllability

minimization of mutual inductances to VLC.

Positional Instability

n-index: n (stable condition: 0<n<1.5)

n-index

Positions of VFC on the cross section

Effects of Plasma Current

- In an actual system, electromagnetic force is modified by magnetic field produced by plasma and PF coil currents.
- Their influences are small enough to keep the advantage of VLC.

Stress with Supporting Board

Power Supply and Its Operation

Breakdown Condition

Error fields by eddy current require pre-ionization.

Eddy current analysis

$$A = \frac{\mu_0}{4\pi} \int_s \frac{J}{\rho} ds$$

J= × V V: current vector potential : distance between source and observed points.

Vacuum vessel

materialsus304width 2.8×10^{-3} mresistivity 7.2×10^{-7} 'mmajor radius0.30 mminor radius0.082 m

A vacuum vessel is constructed by 3 insulated blocks, and has a periodicity of 120 degree.

Without eddy current With eddy current

Error fields by eddy current prevent plasma breakdown.

Plamsma position control

Peak plasma current

Plasma current and safety factor

Cauchy Condition Surface (CCS) method

CCS method is based on an exact integral equation. $\sigma \cdot \phi(x) + \int_{\partial \Omega_p} [G(x, y) grad\phi - \phi(y) gradG] dS / r_y = \int_{\Omega_p} \mu_0 j_c(y) G(x, y) dV(y) / r_y^2$

- Magnetic field by plasma current is replaced by surface integrals of B and φ on CCS.
- •B and \$\phi\$ on CCS are determined from sensor signals.
- Accuracy of calculation increases with the number of sensor signals.
- Axisymmetry is assumed.
- Plasma current is also evaluated from magnetic data.

Visualization by CCS

- The relation of toroidal field and stress is obtained by **virial theorem**, which shows that the optimal stress configuration is uniform tensile stress.
- When A=2, VLC makes 1.4 times stronger magnetic field than TF coil.
- VLC winding generates small error fields, and makes room for blanket and other parts in conventional tokamak reactors.
- Nearly uniform stress distribution with VLC configuration is obtained from both uniaxial model and FEM analysis.
- A small **VLC** tokamak *Todoroki-II* was constructed and its experiments started.

- Peak plasma current with an additional vertical field was increased to 1.6 times larger than that of non-vertical field discharge.
- Error field is estimated from eddy current by FEM.
- It was shown that plasma current was limited by loop voltage or toroidal field strength.
- Plasma current and surface were evaluated by **CCS** method, and validity of **CCS** method for a small pulsed tokamak was verified.
- In order to increase discharge time, current control with arbitrary wave form is required.