Breakdown Analysis of Tokamak by Collisional Ionization Model

> International Symposium PLASMA2001 (Warsaw, Poland) 19 Sep. 2001

H. Tsutsui, S. Tsuji-Iio, R. Shimada

Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

Background and Objective

Investigation of breakdown phenomena in the strong magnetic field with toroidal configuration

Breakdown and Plasma Formation

- Breakdown
 - Electron-neutral gas collisions are dominant (Avalanche model by Townsend)

• Plasma Formation

- Electron-lon collisions have to be considered including the thermal motion of electrons
- Electromagnetic field by plasma current is negligible

Elementary Process

Tabl	e 1:	Е	lementary	processes	$_{in}$	hyd	irogen	plasmas
------	------	---	-----------	-----------	---------	-----	--------	---------

				Δw
1	e+H	\rightarrow	$2e+H^+$	$13.6\mathrm{eV}$
2	e+H	\rightarrow	$e+H^*$	10.2 eV
3	$e+H_2$	\rightarrow	$2e+H_2^+$	15.4 eV
4	$e+H_2$	\rightarrow	e+2H	$10.0 \mathrm{eV}$
5	$e+H_2$	\rightarrow	$_{\rm e+H+H^*}$	$14.9 \mathrm{eV}$
6	$e+H_2$	\rightarrow	$e+H_2^{v1}$	0.5 eV
$\overline{7}$	$e+H_2$	\rightarrow	$e+H_2^{v2}$	$1.0 \mathrm{eV}$
8	$e+H_2$	\rightarrow	$e+H_2^b$	11.37 eV
9	$e+H_2$	\rightarrow	$e+H_2^c$	11.7 eV
10	$e+H_2^+$	\rightarrow	$2e+2H^+$	$14.7 \mathrm{eV}$
11	$e+H_2^+$	\rightarrow	$\rm e{+}H{+}H^{+}$	$2.4 \mathrm{eV}$
12	$e+H_2^+$	\rightarrow	$e+H^*+H^+$	14.0 eV
13	$e+H_2^+$	\rightarrow	$H+H^*$	0 eV
14	$e+H_2$	\rightarrow	$e+H_2$	0 eV
15	e+H	\rightarrow	e+H	0 eV
16	$e+H_2^+$	\rightarrow	$e+H_2^+$	0 eV
17	$e+H^+$	\rightarrow	$e+H^+$	0 eV

Table 1: Elementary processes in helium plasmas

				Δw
1	e+He	\rightarrow	$2e+He^+$	24.6 eV
2	$e+He^+$	\rightarrow	$2e+He^{2+}$	$54.4\mathrm{eV}$
3	e+ He	\rightarrow	$e + He^{1s2s1s}$	20 eV
4	$e + He^{1s2s1s}$	\rightarrow	$2e+He^+$	4 eV
5	e+ He	\rightarrow	$e + He^{1s2p1p}$	20 eV
6	$e + He^{1s2p1p}$	\rightarrow	$2e+He^+$	3.5 eV
7	e+He	\rightarrow	$e + He^{1s2s3s}$	20 eV
8	$e + He^{1s2s3s}$	\rightarrow	$2e+He^+$	5 eV
9	e + He	\rightarrow	$e + He^{1s2p3p}$	20 eV
10	$e + He^{1s2p3p}$	\rightarrow	$2e+He^+$	$3.8 \mathrm{eV}$
11	$e + He^{1s2s3s}$	\rightarrow	$e + He^{1s2s1s}$	0.8 eV
12	$e + He^{1s2s3s}$	\rightarrow	$e + He^{1s2s1p}$	1.3 eV
13	e+He ^{1s2s1s}	\rightarrow	$e + He^{1s2p3p}$	0.35 eV
14	$e + He^{1s2p3p}$	\rightarrow	$e + He^{1s2p1p}$	0.25 eV
15	$e + He^{1s2s1s}$	\rightarrow	$e + He^{1s2p1p}$	0.6 eV
16	$e + He^{1s2s3s}$	\rightarrow	$e + He^{1s2p3p}$	$1.1 \mathrm{eV}$
17	e+He	\rightarrow	e+He	0 eV

Basic Equations

$$\frac{\partial n_{e}}{\partial t} + \nabla \cdot (n_{e}\mathbf{v}_{d}) = \alpha \mathbf{v}_{d} n_{e}$$

$$\alpha = \frac{V_{I}}{v_{d}} \quad \text{Townsend Coefficient}$$

$$e\mu \mathbf{v}_{d} = e(\mathbf{E} + \mathbf{v}_{d} \times \mathbf{B}) \text{ Drift Approximation}$$

$$\mu = \frac{e}{m_{e}v_{p}} \quad \text{Mobility}$$

$$\psi(x) = \int G(x, x') j_{\varphi}(x') d^{2}x'$$

$$\frac{\partial n_{e}W_{e}}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial n_{e}W_{e}}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial n_{e}W_{e}}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (n_{e}W_{e}\mathbf{v}_{d}) = \mathbf{j} \cdot \mathbf{E} - n_{e}\sum_{i} v_{i}\Delta W_{i}$$

Static Model

It is assumed the energy of electrons is stationary.

Dependence of Ve, α on E/P in Static Model

Numerical Model

Full 2D-Simulation without Static Model

Parameters and Time Evolution

Breakdown condition is assumed to be **ionization degree > 0.1**

Magnetic Configurations at Breakdown

The direction of electrons on the cross section is upward.

Configurations at Breakdown

Electron Density

Current Density Elec

Electric Field

The direction of electrons on the cross section is upward.

Relations of Ve and α in static model

Conclusions

- We made a 2D breakdown code which includes all electromagnetic fields and cross sections depending on the electron energy.
- Qualitative agreements between simulations and experiments in JT-60U were obtained by the use of shifted-Maxwellian distribution.
- The breakdown voltage of helium was calculated to be lower than that of hydrogen. It is qualitatively explained by the static model.

Dependence to Initial Ionization Degree

