

A Tokamak with Nearly Uniform Coil Stress Based on Virial Theorem

<u>H.Tsutsui</u>,

K.Nayakama, T. Ito, H. Ajikawa, S.Nomura, S.Tsuji-Iio, R.Shimada

Research Laboratory for Nuclear Reactors, **Tokyo Institute of Technology**

- We studied the tokamak with the Force-Balanced Coils which are hybrid helical coils of OH and TF coils and reduced the electromagnetic force.
- The virial theorem, which is derived only form the equilibrium, shows that the tension is required to hold the magnetic energy.
- The virial theorem in magnet systems is derived by the replacement of plasma pressure to stress.
- In this work, we extend the FBC by the virial theorem, and obtain the minimal stress condition.
- The new compact tokamak based on the virial theorem is designed and constructed.

Centering Force by Poloidal Current

TODOROKI-I	
Value	
1 T	
10kA	
4ms	

- The error field by FBC made the control of plasma difficult.
- The force of toroidal direction was reduced in FBC. Is it held in stress ?

- Reduction Error Field
- Estimation of Stress
- Application of Virial Theorem

• Positive stress (tension) is required to hold the field.

- Uniform tension is favorable.
- Theoretical limit is determined.

$$\widetilde{\sigma}_1 = \widetilde{\sigma}_2 = \widetilde{\sigma}_3 = \frac{1}{3}$$

$$\begin{split} \left< \widetilde{\sigma}_{\theta} \right> &= \frac{N^2 - A^2}{\frac{N^2}{2} + A^2 \log 8A - 2A^2} \\ \left< \widetilde{\sigma}_{\phi} \right> &= \frac{A^2 \log 8A - A^2 - \frac{N^2}{2}}{\frac{N^2}{2} + A^2 \log 8A - 2A^2} \\ \left< \widetilde{\sigma}_{\theta} \right> &+ \left< \widetilde{\sigma}_{\phi} \right> = 1 \\ N &\equiv \frac{I_{\theta}}{I_{\phi}} : \text{Pitch of Coil} \\ A : \text{Aspect Ratio} \end{split}$$

Virial-Limit Condition

Shape of Coils

Comparison of Toroidal Field

 In the case of low aspect ratio, 1.5 times stronger magnetic field is created compared with traditional TF coil.

Equilibrium of Magnetic Pressure and Stress

 Distribution of stress in the toroidal shell with circular cross section is derived analytically by use of magnetic pressure.

Distribution of Stress

- When A=100, distribution of stress is flat.
- There is no advantage of helical winding.

(low aspect ratio)

- When A<10, distribution of stress is important.
- Assumption of large aspect ratio is not held.
- Optimal distribution is achieved to minimize the stress at θ=π.

Equilibrium of Electromagnetic Force and Stress

$$\frac{\mathrm{d}T}{\mathrm{d}s} + \frac{F_u}{R} = 0$$
$$\mathrm{d}F \qquad T$$

$$\frac{\mathrm{d}F_u}{\mathrm{d}s} + \frac{T}{R} + f_u = 0$$

T: tension, F: sharing force

R: curvatur radius,

- f: electromagnetic force
- *s*: coordinate by length of coil

- The tension of coil with pitch=3 is reduced and its distribution is flat.
- In the fat cable, the bending stress (proportional to bending moment) is important.
- The distribution of bending moment in the coil with pitch 3 is flat.

Why FEM analysis ?

3D analysis is required because the virial-limit condition is obtained from the 2D shell model.

Conditions in FEM Analysis

3D-Model with
Electromagnetic Force
Structure Analysis by FEM (NASTRAN) Stress

Parameters	Value
Major radius	0.30 m
Minor radius	0.14 m
Aspect ratio	2.14
Pitch number N	24 turns
Coil current	96 kA/1 pole
Toroidal field	1.5 T
Cross section	<u>380 mm²</u>
Young's modulus	$1.26 \times 10^5 \text{ N/mm}^2$
Poisson's ratio	0.33

Current layer coincide with magnetic surface.

VLC with *N*=3

FBC with N=4

HC with *N*=3

HC with N=4

Models in Analysis

Distributions of von Mises Stress

VLC(*N*=3) has no stress concentration and minimum stress compared with those of other coils. VLC realize both nearly uniform distribution of

stress and minimum stress in 3D model.

Vertical Field

8},

VFC

How to design Vertical Field Coil (VFC) < Controllability

minimization of mutual inductances to VLC.

Positional Instability

n-index: n (stable condition: 0<n<1.5)

Positions of VFC on the cross section

Supporting Board

Limiter

VLC

VFC

Vessel

Power Supply and Its Operation

Breakdown Condition

- The relation of toroidal field and stress is obtained by **virial theorem**, which shows that the optimal stress configuration is uniform tensile stress.
- When A=2 and $\kappa=2$, a virial-limit coil (**VLC**) makes 1.7 times stronger magnetic field than TF coil.
- VLC winding generates small error fields, and makes room for blanket and other parts in conventional tokamak reactors.
- Nearly uniform stress distribution with VLC configuration is obtained from both uniaxial model and FEM analysis.
- A small **VLC** tokamak *Todoroki-II* was constructed and its experiments started.